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Abstract. A model of the diffusion of a tagged particle moving by hopping on a lattice, where
a finite concentrationc of background particles gives rise to blocking due to forbidden multiple
occupancy of sites, is extended to the situation where disorder exists on the lattice. In this paper
the specific case of variable bond hopping rates is considered in the strongly disordered limit
where a finite concentrationp of the bonds are completely blocked. The resulting self-diffusion
coefficient takes the form(1− c)(1− p/pc)D0f wherepc is the percolation limit andf is
the dynamical correlation factor. It is expected thatf is affected by the disorder and this is
estimated by random-walk theory through a calculation of〈cosθ〉 whereθ is the angle between
successive jumps of a particle and a vacancy. Also a quite comprehensive simulation study
of tracer diffusion in a two-dimensional square lattice for 0< c < 1 and 0< p < pc is
performed. The results are in good agreement with the analytical results which are known for
small concentrations. Our approximate theory gives a good description over the entire range
provided that the corrected form of〈cosθ〉 is used.

1. Introduction

Systems of classical particles undergoing thermally activated hopping motion between vacant
sites on a perfect or somehow disordered lattice have been widely used as models of atomic
diffusion in solids. The bulk of this work has been concerned with ordered lattices and
with the study of the characteristics of the motion of a single tagged tracer particle. In the
limit of interstitial diffusion such a particle is taken to move in a largely empty lattice of
interstitial sites. At the opposite extreme where the particle is confined to a lattice which is
completely full except for a few vacancies, its motion is restrained by the small number of
vacant sites through which motion can occur. This takes place under the usual assumption
that double occupancy of any site is forbidden, although this condition has been relaxed
in some models [1]. Other extensions of the theory where interactions between adjoining
atoms and vacancies favour clustering have also been considered [2].

In many physical systems an appreciable fraction of the sites available for hopping
motion will also be occupied by other moving atoms. Examples include the diffusion of
hydrogen in metal hydrides [3] and ionic motion in superionic conductors. This has led
to an extensive study of the motion of a tagged particle in a many-body system. Several
methods have been used with considerable success in ordered lattices. This work has been
extensively reviewed by Allnatt and Lidiard [4] and by Haus and Kehr [5]. It should be
noted that collective diffusion on lattices with symmetric transition rates reduces to the
single-particle problem [6, 7].
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Figure 1. Schematic representations of the potential energy seen by the diffusing particle in a
random system, (a) with equal well depth and random barrier heights, and (b) with random trap
depths.

With increasing interest in the ionic conductivity of new materials such as glasses, as
well as theoretical progress in the properties of disordered systems, it is natural to extend
such studies to disordered lattices. Work on special non-periodic structures such as fractals
and percolating clusters had been widely reviewed by Havlin and Ben-Avraham [8] and by
Bouchaud and Georges [9]. In a disordered system such as a glass the static structure of the
basic atomic framework is not a regular periodic lattice and hence the preferred positions
for the mobile ions are irregularly distributed. Further, the potential wells associated with
these sites will vary with the environment, so in equilibrium the relative occupation of such
sites will also vary. In addition, because of the irregular arrangement of the immobile ions,
the potential barriers for ionic motion between sites will also vary. It is difficult to evaluate
a model which includes all of these effects and which isolates the various contributions
to the conductivity. Therefore, we have confined our attention to idealized models where
the underlying structure remains a regular periodic lattice. In this paper and its sequel
[10] we study two simple models in which disorder is introduced to a periodic lattice by
varying at random the barrier heights and hence the rates of hopping between the available
sites, and by varying the depths of the potential at each site, so giving rise to traps. A
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schematic representation of the potential energy function for these two cases is shown in
figure 1. Figure 1(a) with wells of fixed depth but of varying heights relates to the bond
disorder model used in this paper. Figure 1(b) is a model for site disorder treated in the
accompanying paper [10].

In a lattice gas of particles where double occupancy of the sites is forbidden, there
is an interplay between the random nature of the allowed hops and the self-avoidance of
the hopping particles. This fact gives rise to two important effects on the motion of the
single tagged particle, that substantially differentiate it from the random walk of the single
particle on an otherwise empty lattice. First there is a blocking effect which decreases the
number of successful hops of the tagged particle. Second the walk performed by the tagged
particle is correlated with successive jumps in opposite directions being more probable than
successive jumps in the same direction. This effect can be envisaged as a consequence of
the fact that immediately after a successful hop by the tracer particle there is with certainty
a vacancy behind it, hence enhancing the tendency for a return hop. Both effects contribute
to a decrease in the diffusion coefficient of the tracer.

If static disorder is introduced into the lattice, which affects the probability of site
occupation and of the hopping rates between sites, there are both direct and indirect
consequences on the motion of the tagged particle. The direct interaction with the defects
modifies the hopping rate and can introduce additional blocking effects as well as new
correlation into the particle motion. In addition the defects influence the motion of the
remaining particles causing changes in their interaction with the tagged particle. The
behaviour of the tracer diffusion coefficient will reflect this interplay between static and
dynamic correlations. These effects are largest if the disorder takes the form of prohibited
sites or missing bonds. From a macroscopic point of view the static nature of these defects
gives rise to a percolation problem, where the allowed sites are grouped in clusters and the
occurrence of diffusion is conditioned on the existence of an infinite percolating cluster. At
the percolation limit diffusion becomes anomalous, but these effects are beyond the scope
of this paper.

The present system has previously been considered by Brak and Elliott [11] who
attempted to calculate the blocking and correlation effects in the presence of bond disorder
on a three-dimensional cubic lattice using a two-particle rate equation. This was an extension
of the method introduced by Tahir-Kheli and Elliott (TKE) based on a truncation of the
hierarchy of master equations [12]. This proved to be a useful way of interpolating between
the exact results for high and low concentrations, and to be versatile enough to handle a
number of more complex situations [13]. In the present paper we extend the treatment of
particle diffusion using the concepts of random-walk theory as employed in the derivation of
the diffusion coefficient of a tagged particle in the interstitial limit and in the single-vacancy
limit of non-defective lattices. As in those cases, the results in disordered lattices are
obtained by considering an effective-medium description of the system, and by considering
the correlation effects to be described by an interpolation scheme similar to that found by
TKE.

In this and the accompanying paper we shall consider in detail the simple example of
the square net in two dimensions. In this paper, which treats bond disorder only, explicit
numerical results will be obtained for the strongly disordered case where some bonds have
zero hopping rate. This system has been simulated by using the Monte Carlo method.

This paper is arranged as follows. Section 2 summarizes the results of the TKE theory
in an effective medium. Section 3 outlines the random-walk approach and derives an
improved expression for the case of the two-dimensional bond-diluted square lattice. Section
4 describes the simulation in this system, the results of which are reported in section 5.
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2. Effective-medium theory

The theory developed by TKE and others in its self-consistent form [14] gives an
approximation for the diffusion coefficient of a tracer particle which can hop with a transition
rateJ0 to nearest-neighbour sites on ad-dimensional cubic lattice with bond lengtha, in
the presence of a concentrationc of background particles which have transition rateJ as

D = (1− c)D0f (1)

where

D0 = J0a
2 (2)

and

f −1 = 1− 2cJ0〈cosθ〉
(J + J0f v)(1+ 〈cosθ〉) . (3)

The termv = (1 − c), the concentration of vacancies into which hops can take place,
represents the blocking factor and gives the mean-field approximation to the problem.f

is the correlation factor which is a measure of the fraction of successful jumps which
are effective in increasing the mean square displacement of the tagged particle since some
successful jumps are ‘wasted’ due to an imbalance between the probabilities for a sequential
hop in the forward and backward direction. This is related to〈cosθ〉 which is defined as
the average cosine of the angle between successive jumps on a lattice containing a single
vacancy. For the case of self-diffusion whenJ0 = J , f given by equation (3) depends only
on 〈cosθ〉:

f −1 = 1− 2c〈cosθ〉
(1+ f v)(1+ 〈cosθ〉) · (4)

For a square lattice which we shall study numerically it can be shown (see Montet [15])
that

〈cosθ〉 = 2

π
− 1. (5)

When defects are introduced in the form of a concentrationp of missing bonds through
which hopping is forbidden, there is a further blocking effect. The mean-field approximation
yields

D = (1− c)(1− p)D0f. (6)

However, it is well known that such a system breaks up into finite clusters whenp > pc, the
percolation concentration, soD = 0 in this region. Forp < pc it is generally accepted that
diffusion is normal [16] but it becomes anomalous [17] atp = pc. A detailed description
of the percolation problem yields a scaling form ofD(p) ∼ (pc−p)s wheres is the critical
exponent, but this is beyond the scope of the present paper.

An improvement to mean-field theory which gives a better approximation to the
percolation effects is obtained by effective-medium theory which includes multiple scattering
of the diffusing particles by the defects. In this problem [18, 19] the effective hopping rate
takes the simple form

Jp = (1− p/pc)J (7)

where

pc = 1− 2/Z (8)
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for a cubic lattice whereZ is the number of neighbours. For a square net this gavepc = 1/2
which is the correct result [20]. However, we note that the scaling form forD(p) with s = 1
is incorrect in this limit. Nevertheless, it provides a very convenient working approximation:

D(p) = (1− c)(1− p/pc)D0f. (9)

The correlation factorf has been seen to be independent ofJp and hence is unaffected
in this approximation. However, this factor depends on the microscopic environment of the
interacting particle and vacancy. Since a successful jump must take place through a non-
defective bond, not all neighbouring bonds are statistically equivalent after a successful
jump. This characterizes a departure from the homogeneous situation implicit in the
effective-medium approximation and introduces further correlation into the walk performed
by a tagged particle on a defective lattice. We assume with Brak and Elliott [11] that these
effects can be considered as a modification of〈cosθ〉 for which we attempt to find a suitable
approximation from random-walk concepts.

The basic argument is as follows. The TKE approximation is an extrapolation between
the asymptotically correct form off in the limits of small concentrationc of background
particles and of small concentrationv of vacancies. We assume that the relationship between
f and 〈cosθ〉 is preserved in the disordered lattice. By applying random-walk theory to
the single-vacancy limit in the disordered lattice we obtain an expression for〈cosθ〉 which
accounts for the dynamical correlations, and which depends on the concentration of defects.

3. The random-walk approach

In what follows we will briefly review the derivation of the dynamical correlation factor in
the single-vacancy limit in a non-defective lattice using random-walk concepts. We restrict
the discussion to square lattices. In the next subsection we will consider the modifications
induced by the presence of defects.

3.1. The non-defective lattice

The derivation of the dynamical correlation factor via random-walk theory has been
extensively studied in the past [21, 22]. In order to introduce the main definitions we
outline the main steps of this derivation.

The average mean square displacement of a tagged particle after a large numberN ′ of
successful jumps can be expressed as

R2 =
N ′∑
i=1

N ′∑
j=1

ri · rj ' N ′
(

1+ 2
∑
l

cosθl

)
(10)

where cosθl is the average cosine of the angle between displacementsl steps apart. In the
single-vacancy limit, displacements arbitrarily far apart are correlated and it is possible to
show that

cosθl = (cosθ)l (11)

where cosθ ≡ cosθ1 designates the average cosine of the angle between two consecutive
jumps of the tagged particle. Substituting equation (11) into equation (10), the following
expression for the diffusion coefficient is obtained:

D = fbf0 (12)
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where

f0 = 1+ cosθ

1− cosθ
(13)

andfb, the blocking factor, is the fraction of successful jumps out of a given numberN of
attempts, i.e.,fb = N ′/N . For the sake of simplicity we are working with units in which
D0 = 1. In order to evaluate cosθ , one has to consider the random walk performed by a
single vacancy in the lattice just after an exchange with the tagged particle. Letr and i
designate the positions of the tagged particle and the vacancy, respectively, after such an
exchange. Letm designate the other neighbour of siter, opposite to the vacancy. In this
situation cosθ is given by

cosθ = P (r)mi − P (r)ii (14)

whereP (r)mi and P (r)ii are the probabilities of the vacancy returning to siter, for the first
time, through sitem or site i, respectively. These probabilities can be expressed in terms
of generating functions which satisfy the difference equation

Ulj (λ) = δlj + λ
∑
l1

pll1Ul1j (λ) (15)

and are defined by

Ulj (λ) =
∞∑
N=0

λNPlj (N). (16)

In equation (15)pll1 is the probability for a transition between sitesl andl1, i.e.,pll1 = 1/4
if l and l1 are nearest neighbours, and zero otherwise.Plj (N) in equation (16) is the
probability that a random walker initially occupying sitej is at site l after N steps. In
terms of these functions it is possible to show that (see appendix A)

P
(r)
li =

1

4

(
Uli(1)− Ulr(1)Uri(1)

Urr(1)

)
(l = m, i). (17)

Since by symmetryUmr = Uir , it follows that

〈cosθ〉 = 1

4
(Umi(1)− Uii(1)). (18)

Equations (17) and (18) should be interpreted as being defined by a limiting process,
since the generating functions in two dimensions are divergent forλ = 1 although these
divergencies cancel in (17) and (18). Equations (12), (13) and (18) with the fact that
fb = (1− c) completely specify the dynamic correlation factor for the limit of vanishingly
small vacancy concentration.

The dynamical correlation factor for vanishingly small concentration of particles is given
by

f0 = 1+
(

c

1− c
)( 〈cosθ〉

1+ 〈cosθ〉
)

(19)

where〈cosθ〉 is given by equation (18). A derivation of this expression from the solution
of a second-order rate equation can be found in reference [12].
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Figure 2. A schematic diagram of the situation just after a tracer–vacancy exchange in the
single-vacancy case. The bond connecting the site occupied by the vacancy (i) to the site
occupied by the tagged particle (r) is non-defective with probability one. The bond connecting
r to sitem has probabilityp of being defective.

3.2. The disordered lattice

According to the discussion of section 2, in the effective-medium picture, the dynamical
correlation factor, equation (3), is, for vanishingly small concentration of vacancies, given
by equation (13). In this approximation the interaction of a vacancy with the tracer particle
is not affected by the presence of defects. In the actual system, however, we note that
just after a successful jump of the tagged particle, the bond connecting the vacancy to the
tagged particle is with probability one a non-defective bond. In an average sense, this fact
leads to an enhancement in the probability for a return jump, since the bond connecting the
tagged particle to the site opposite to the vacancy has a probabilityp of being defective.
Figure 2 illustrates the situation. We expect this fact to enhance the correlation in the walk
performed by the tagged particle, leading to a decrease in the correlation factor.

In the notation of the preceding subsection, the presence of disorder will change the
probabilitiesP (r)mi andP (r)ii , leading to a consequent change in the value of cosθ . The new
value of cosθ has to be evaluated by considering all possible bond environments, weighted
by their respective probabilities, just after a successful jump of a tagged particle. This
average will be approximated by considering an average medium for the vacancy, in which
the vacancy hops to a nearest neighbour with probability(1− p)/4. As discussed above,
the probability for a transition from sitei to site r will be 1/4. Since the value of cosθ
is highly sensitive to the existence or not of the bond connecting siter to sitem, cosθ
will be evaluated separately for the two situations. The final result will, then, be given by
the sum of the two values with weights 1− p andp, respectively. Note that the effective-
medium approximation reflects characteristics of the large-scale arrangement of bonds in a
defective lattice. The effective lattice appropriate to the evaluation of local or microscopic
quantities, such as cosθ or fb, is the ‘mean-field lattice’ in which a transition between
nearest neighbours is given by(1− p)/4 instead of(1− 2p)/4.

In order to evaluate cosθ for the two situations discussed above, we define the
‘restricted’ generating functions

U
(r)
li = δli +

∑
l1 6=r

pll1pl1i +
∑
l1 6=r

∑
l2 6=r

pll1pl1l2pl2i + · · · . (20)

These functions can be interpreted as the average number of visits to sitel by a random
walker that starts at sitei and avoids siter. In terms of these functions, cosθ is expressed
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as (see appendix A)

cosθ = prmU(r)
mi − priU(r)

ii . (21)

From equation (15), by iterating and at each iteration isolating the terms that involve sitesi,
r andm, it is possible to show that the functionsU(r)

mi andU(r)
ii satisfy the following system

of equations:

U
(r)
ii = 1+ aiiU(r)

ii + aimU(r)
mi (22)

U
(r)
mi = amiU(r)

ii + ammU(r)
mi (23)

where

alj = plj +
∑

l1 6=i,r,m
pll1pl1j +

∑
l1 6=i,r,m

∑
l2 6=i,r,m

pll1pl1l2pl2j + · · · . (24)

Note that the functionsU(r)
lj and alj are symmetrical with respect to interchange of

the subscript indices. The above equations are general. Noting that the functionsalj
(l, j = i, m), involve only paths that do not ‘visit’ sitesi, r andm, one can express the
solution for general values of the transition probabilitiespri andprm in terms of the solution
for a perfect lattice, i.e., a lattice in which all transition probabilities have the same value.
In the present case the perfect lattice is the one in which all transition probabilities are equal
to (1− p)/4. For this lattice, it is possible to show that (see appendix A)[

U
(r)
ii

]
= 2

1− p (25)[
U
(r)
mi

]
= 2(2 cosθ0+ 1)

1− p (26)

where from now on we enclose the quantities referring to the perfect lattice in square
brackets and denote the corresponding value of cosθ by cosθ0. From equations (22) and
(23) one obtains

[aii ] = [amm] = 1+
(

1− p
8

)(
1

cosθ0(1+ cosθ0)

)
(27)

[aim] = [ami ] = −1

8

(
1+ 2 cosθ0

1+ cosθ0

)
1− p
cosθ0

. (28)

From equation (24), one can express the functionsalj for the lattice with generalpri and
prm in terms of the corresponding functions for the perfect lattice

aii = [aii ] + λi (29)

ami = [ami ] (30)

amm = [amm] + λm (31)

where

λl = pll −
[
pll
]

(l = i, m). (32)

Substituting equations (29), (30) and (31) in equations (22) and (23) and taking into account
equation (21) one finally obtains

cosθ = − pri(1− [aii ] − λm)− prm [aim]

(1− [aii ] − λi)(1− [aii ] − λm)− [aim]2 . (33)

For the case in whichpri = 1/4 andprm = 0, equation (33) yields

(cosθ)I = − 1+ 2 cosθ0(1+ cosθ0)

1+ 2p cosθ0(1+ cosθ0)
(34)
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while for pri = 1/4 andprm = 1/4 the following result is obtained:

(cosθ)II = cosθ0

1− p(1+ cosθ0)
. (35)

The final expression for cosθ is, therefore, given by

〈cosθ〉 = −p 1+ 2 cosθ0(1+ cosθ0)

1+ 2p cosθ0(1+ cosθ0)
+ (1− p) cosθ0

1− p(1+ cosθ0)
. (36)

Figure 3. The average cosine of the angle between successive displacements of the tagged
particle as given by equation (36), as a function of the defective bond concentrationp.

We expect this expression to be valid only for low to intermediate concentrations
of defects. For higher concentrations, i.e.,p near the percolation threshold, the average
procedure followed in the derivation of equation (36) clearly breaks down, since it does not
account properly for the existence of dead ends and finite clusters. In figure 3, the corrected
value of〈cosθ〉 is plotted as a function ofp. As expected, the tendency for a backward jump
increases with increasingp leading, therefore, to a decrease in the dynamical correlation
factor with increasing concentration of defects.

4. Simulation

A system of hopping particles in a lattice is generally described by the continuous-time
master equation

dP(α, t)

dt
=
∑
β

WαβP (β, t)−
∑
β

WβαP (α, t) (37)

where Wαβ is the probability per unit time for a transition from configurationβ to
configurationα andP(α, t) is the probability of configurationα at timet , for a given initial
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condition. For such a lattice system in configurationν we can definepνi as the tagged
particle andnνi as the background particle occupation number (with value 0 or 1) such that
the average occupation (or the probability of occupation) of sitei is 〈pi〉 =

∑
ν p

ν
i P (ν, t)

or 〈ni〉 =
∑

ν n
ν
i P (ν, t), respectively.

Since in our model the transitions between configurationsα and β correspond to the
hopping of particles between sitesi andj with rateJij , the set [Wαβ ] can be mapped to the
set [Jij ]. This reduces the master equation to the rate equations used by TKE. Furthermore,
it can be shown that equation (37) has a solution expressed in terms of a discrete-time
Poisson process with the one-step transition matrixA and some total transition rateλ. Now
if J denotes the probability per unit time for a transition of a single particle between two
sites, the total transition rateλ can be conveniently fixed to the maximum transition rate
out of the possible configurations, i.e.λ = NpZJ , whereNp is the number of particles in
the system. Then the elements ofA assume the form

Aαβ = 1

NpZ
nαβ (38)

Aαα = 1− 1

NpZ

∑
β

nαβ (39)

wherenαβ is equal to unity if the transition between configurationsα andβ is possible, and
zero otherwise. These matrix elements specify completely the simulation procedure.

For a tracer particle initially positioned at the origin the mean square displacement after
N discrete steps calculated over allM initial configurations, forming a setF , is

〈R2(N)〉 = 1

M

∑
β∈F

∑
α

R2
α(A

N)αβ. (40)

In the case of a diffusive tracer, and for a sufficiently large number of system steps, the
relation between〈R2(N)〉 andN is essentially linear, such that

〈R2(t)〉 = 〈R2(Ñ)〉 (41)

whereÑ = NpZJ t is the average number of system steps in timet . Note that if the relation
between〈R2(N)〉 andN involves non-linear terms, equation (41) is no longer valid.

In the case of a disordered system the above equations have to be modified to reflect the
absence of spatial homogeneity and to incorporate an additional average over the disorder.
In particular, for the bond-disordered system discussed before, equation (40) assumes the
form

〈R2(N)〉 = 1

Nc

1

M

∑
b

∑
β

∑
α

(Rα − Rβ)2(AN)bαβ (42)

whereNc is the total number of bond configurations and the sum overb denotes the sum
over all different bond configurations. The superscriptb accounts for the fact that for each
bond configuration there is a different transition matrixA.

4.1. Procedure

In this paper all simulations were carried out on square lattices withNs × Ns sites and
periodic boundary conditions. In most cases we choseNs = 100, but used alsoNs = 150
to check finite-size effects. Out of the 2N2

s bonds, a fractionp were randomly selected
and considered as ‘open’ bonds. They were labelled in such a way that they could be
distinguished from the remaining ‘normal’ bonds. Next, a total number ofNp (Np = cN2

s )
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particles were randomly distributed to the lattice sites. In the simulationsp ranged from
0.00 to 0.40 andc from 0.00 to 0.90. A label was assigned to each site indicating whether
it was empty or not. A different label was assigned to each particle. The simulation loop
starts by randomly selecting both a particle and one of its nearest neighbours. If there is a
normal bond between the selected particle and the nearest-neighbour site and if the latter
is not, already, occupied by another particle, the selected particle is moved. Otherwise
the configuration of the system is kept unchanged. It is easily checked that this procedure
correctly reproduces the probabilities for a transition between two configurations and for
staying at the same configuration, as given by equations (38) and (39), respectively.

In the simulations time is measured by Monte Carlo steps per particle (MCS/p), while
the unit of time is set equal to 1/JZ. The basic simulation loop is repeatedÑ (=NpJZt)
times and the total time span was chosen to be 2000 MCS/p. After each MCS/p the average
tracer particle mean square displacement is evaluated and the complete time history is
recorded. In order to get improved statistics the whole process is repeatedNd times and
the final result is obtained by taking an average over these time histories.

The movement of a particle in a finite system with periodic boundary conditions can be
translated to the movement in an infinite system formed by spatially repeating the original
finite system. Thus it is possible to follow a particle up to arbitrarily large displacements.
Since all particles have the same hopping rate, we can improve the statistics of calculating
the mean square displacement of the tracer by including the histories of background particles
and averaging over them. Since each particle has a distinct initial position in the lattice,
this average is an approximation to the one defined in equation (42).

In order to obtain an estimate of the uncertainty in the values of〈R2〉, the average value
of 〈R4〉 is also calculated for determining the variance

σ 2 = 〈R4〉 − 〈R2〉2. (43)

This quantity is relevant to a weighted linear fitting discussed in the next section.

4.2. Data analysis

As stated before, the computation of〈R2〉 involves an average over the histories of all
particles in the lattice for different configurations of missing bonds. A question that
naturally arises is that of how large should the ensemble of bond-disordered systems be
in order to obtain good statistics. It should be noted that each additional average over the
bond disorder addsNp histories of tracer particle to the averaging process leading to〈R2〉.
In the preliminary runs, it was noticed that, for large number of particles in the lattice,
after a few averages over the bond disorder, the variance of the values ofR2 remained
practically constant. This fact was taken as an indication that for the range of values inp

investigated and for the lattice size considered, the fluctuations in the distribution of clusters
were small. It also indicates that the average performed gives a self-averaging property [9]
and, accordingly, it was assumed that relatively few averages over the bond disorder would
be sufficient to approximate the distribution ofR2. This number (Nd ) was then chosen in
such a way that the total number of tracer particle histories involved in the evaluation of
〈R2〉 remained practically constant for all values ofc. Using the varianceσ 2/NdNp defined
in equation (43) the number of histories was fixed for each pair ofp and c in the range
47 000–55 000. With this choice, the estimated value of the standard deviation of〈R2〉
remained within 0.5%–1.5%.

The diffusion coefficient was obtained from the〈R2〉 data through a fitting procedure,
as follows. Below the percolation threshold there exists, in the average sense, a percolating
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cluster, regardless of the value ofp (see Stauffer [23]). LetP∞ denote the probability that
a randomly selected site belongs to the percolating cluster andns the number of clusters
with s sites, normalized with the total number of sites in the lattice. Then the average value
of 〈R2〉 afterN MCS/p is expected to assume the form (neglecting the possible existence
of a logarithmic term as discussed by van Beijeren and Kutner [24])

˜〈R2〉 = P∞D∞N +
∑
s

snsR
2
s (44)

whereD∞ is the tracer diffusion coefficient in the percolating cluster andR2
s denotes the

average mean square displacement of a tracer particle confined to a finite cluster of size
s. For sufficiently largeN , the second term on the right-hand side becomes independent
of N , rendering the relation betweeñ〈R2〉 andN linear. Then the definition of the tracer
diffusion coefficient isD = P∞D∞ and thus the fitting function is a straight line with the
slope givingD. The intercept is related to the long-time contribution of finite clusters to
˜〈R2〉.

Figure 4. Mean square displacement (in units of bond length) versus time for (a)p = 0.40,
c = 0.90 (solid line) and (b)p = 0.01, c = 0.01 (dashed line).

In order to perform the linear fitting we have to first estimate the number of time steps
necessary for the finite-cluster contribution to become independent ofN . This was found
to be dependent onp being about 500 MCS/p forp = 0.40 (see figure 4). Since the
distribution of 〈R2〉 has a variance that changes withN , a weighted linear least-squares
fitting was used to obtainD. Following Bevington [25] the estimated variances of each
data point were used as weighting factors. If we assume that the values of〈R2〉 for different
values ofN are statistically independent, which is not the case, an estimation of the standard
deviation ofD can be evaluated. However, the estimator thus obtained proved to be much
smaller than the actual variability observed in some ensembles generated through additional
runs. We then resorted to a more direct method. The estimated variance of〈R2〉 increases
with increasing value ofp and it is plausible to expect similar behaviour in the standard
deviation ofD. Ensembles with statistically independent samples were generated for the
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extreme values ofp and an estimation of the standard deviation ofD was then evaluated.
With fifteen samples in each ensemble, the results suggest a standard deviation of the order
of 0.5% for small values ofp (p = 0.00) and 1% for large values ofp (p = 0.40). For
the intermediate values ofp the standard deviation is expected to lie within these limits.

As mentioned previously we checked finite-size effects forNs = 150 and two pairs of
parameters:(p = 0.09, c = 0.01) and (p = 0.40, c = 0.50). The fluctuations observed in
the results were of the same order as the expected standard deviation. Previous simulations
of tracer diffusion in perfect lattices [26], also in two dimensions, did not show any
noticeable influence of the finite-size effects on the results, and none is expected as long as
the tracer root mean square displacement along either thex- or y-direction is small compared
to the system dimensions. In the case under consideration, the presence of disorder has the
effect of decreasing the mean square displacement, hence attenuating the influence of any
finite-size effects that would, eventually, be present in a perfect lattice.

Figure 5. Simulation results (points) for the correlation factor for smallp andc. The full lines
give the results of the theory (equation (45)) using〈cosθ〉 given by equation (5) which is the
analytically correct result asc → 0, p → 0. The results obtained using the improved formula
(equation (36)), though not shown here, give complete agreement with the points.

5. Results and conclusions

The simulations were carried out in two regimes: a coarse grid of points for 0< c < 1
and 0< p < 0.5 at intervals of approximately 0.1, and a more detailed study for small
values ofc = 0.01, 0.05 and 0.10 and 0.01< p < 0.09. Special consideration was given
to the case ofp = 0 in which direct comparison can be made with the simulations of Tahir-
Kheli and El-Meshad [26]. Their results were obtained from averages involving around 106

tracer particle histories and they quote an error of around 0.6%. Extrapolating from our
results using about 50 000 tracer particle histories we would expect this error to be smaller



7946 L F Perondi et al

Figure 6. Simulation results of the correlation factor for a wide range ofp andc. The results
of the theory (equation (45)) obtained using the uncorrected value (equation (5)) of〈cosθ〉 are
shown by the dotted lines. The results obtained using the improved formula (equation (36)) are
shown by full lines. The two theories are identical forp = 0.

Table 1. Comparison between the correlation factors obtained from (a) simulations by Tahir-
Kheli and El-Meshad (reference [26]), from (b) our simulations and from approximate theory
(equations (45)–(46)) forp = 0.

Simulation Simulation Approximation
c (a) (b) (equations (45)–(46))

0.2002 0.882 0.876 0.881
0.3003 0.824 0.826 0.821
0.4002 0.767 0.772 0.761
0.5001 0.710 0.708 0.705
0.6000 0.657 0.662 0.647
0.6991 0.604 0.605 0.596
0.8002 0.552 0.561 0.548
0.9002 0.507 0.505 0.506

i.e. within the range 0.1%–0.2%. Results from the two simulations given in table 1 and
show good agreement within the quoted error bars. They are also compared there with the
approximate theory forf given by equation (3) which has the solution

f = −rc +
√
(rc)2+ 4v

2v
(45)

where

r = 1− 〈cosθ〉
1+ 〈cosθ〉 . (46)

The main results of our simulation studies are shown in figures 5 and 6. The correlation
factor plotted in the figures isD(p)/(1−v)D0 as defined by equation (9), namely(1−2p)f .
The agreement with the simple TKE theory obtained using the geometrical value of〈cosθ〉
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given by equation (5) is reasonably good for smallc (see figure 5) where it is asymptotically
correct and in any casef → 1, but the deviations increase asc and p increase. The
agreement using the improved value of〈cosθ〉p given by equation (36) is much better (see
figure 6) over the whole range of values ofc andp.

Our results of the computer simulation of tracer diffusion on a square lattice with static
bond disorder show the expected dependence on bond concentration with the diffusion
constant falling to zero at the percolation concentrationpc = 1/2. In addition the
characteristic dependence on vacancy concentration is as found in a many-particle system.
The dynamical correlation effects are found to be significantly affected by the static disorder,
and this interplay is effectively described by an approximate treatment using random-
walk theory. The method can be readily generalized to three-dimensional lattices. In
an accompanying paper similar arguments are applied to study a system where the disorder
consists of variations in the site energies and their occupation.
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Appendix A

We consider a two-dimensional lattice in the single-vacancy limit, just after a tracer particle–
vacancy exchange. Leti and r designate the sites occupied by the vacancy and the tracer
particle, respectively, and letm designate the other site neighbour tor, opposite to the
vacancy (see figure 2). The probability that the vacancy returns tor, for the first time,
through sitei (m), is given by the sum of all weighted paths that connect sitei to sitei (m),
avoiding siter, multiplied by the probability of the final jumpi → r (m→ r). Formally
one can write

P
(r)
li = prlU(r)

li (l = i, m) (A1)

where

U
(r)
li = δli + pli +

∑
l1 6=r

pll1pl1i +
∑
l1 6=r

∑
l2 6=r

pll1pl1l2pl2i + · · · . (A2)

The average cosine of the angle between two successive jumps of the tagged particle is,
therefore, given by

cosθ = prmU(r)
mi − priU(r)

ii . (A3)

In the case of a perfect lattice, in which all transition probabilities are the same, withpll′ = q
for l and l′ being nearest neighbours andpll = 1− 4q, the restricted generating functions
U
(r)
li assume a particularly simple form. Departing from equation (15) we have

Uli = δli +
∑
l1 6=r

pll1Ul1i + plrUri . (A4)

If one iterates equation (A4) and at each iteration isolates the term involving siter, the
following expression is obtained:

Uli = U(r)
li + U(r)

lr Urj (l 6= r). (A5)
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On the other hand, by iterating the equation forUlr in a similar way, it is possible to show
that

U
(r)
lr = U(r)

lr Urr . (A6)

From equations (A5) and (A6) one, then, obtains

U
(r)
li = Uli −

UlrUri

Urr
. (A7)

From equation (15) it can be shown that the generating functionsUli for a givenq are
related to the ones forq = 1/4, Uli , by

4qUli = Uli . (A8)

From symmetry one obtains

Ulr = Uii − 1 (l is a nearest neighbour ofr) (A9)

Uii = Urr . (A10)

For two dimensions it is a known result that limλ→1− Uii → ∞. From these results, it is
shown that

U(r)ii =
2

4q
(A11)

U(r)mi =
2(2 cosθ0+ 1)

4q
. (A12)
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